Potenciál měření nesymbolických početních schopností pro časnou diagnostiku dyskalkulie

Vendula Šamajová, Hynek Cígler

Abstrakt

Cílem studie je přispět k porozumění souvislostem mezi nesymbolickými numerickými schopnostmi a vývojovou dyskalkulií. Zabýváme se tedy početními funkcemi již na úrovni vrozených dispozic, předcházejících osvojení číselného aparátu, které jsou zajišťovány instancí tzv. aproximativního numerického systému (ANS) a projevují se v dovednosti odhadu kvantit. Pokud tento vztah existuje, bylo by jej zřejmě možné využít pro praktickou diagnostiku dyskalkulie již v raném věku dítěte před projevením případných obtíží v numerických dovednostech. Naše pilotní studie srovnává úroveň nesymbolických početních schopností (početního odhadu) u dětí s dyskalkulií a kontrolní skupiny. Kompletní výzkumný soubor tvořilo 75 žáků ve věkovém rozmezí 6,6 až 17,8 let (M = 12,03; SD = 2,68), přičemž 25 (33 %) z nich vykazovalo matematické obtíže, které jsou v 17 případech(23 %)vysvětleny diagnózou dyskalkulie. Sběr dat byl realizován s využitím elektronického „testu početního odhadu“ vlastní konstrukce, tvořeného tzv. aproximativními úlohami založenými na principu diferenciace množství. Výsledky naznačují, že kontrolní skupina diskriminuje množství lépe než děti s matematickými obtížemi. Po kontrole věku respondentů je však vztah dyskalkulie a výkonu v testu početního odhadu slabý a statisticky nevýznamný, beta = –0,232, p = 0,056. Zjištěné výsledky jsou diskutovány ve vztahu k možnostem jejich využití v praxi.

https://doi.org/10.29364/epsy.369

Klíčová slova

nesymbolické numerické systémy, aproximativní numerický systém, ANS, diskriminace množství, diagnostika dyskalkulie

Literatura

Agrillo, C., Petrazzini, M. E. M., & Bisazza, A. (2015). At the root of math: Numerical abilities in fish. In D. C. Geary, D. B. Berch, & K. Mann Koepke (Eds.), Evolutionary origins and early development of number processing (Vol. 1, Mathematical cognition and learning, pp. 3–33). San Diego, CA: Elsevier Academic.

Aunio, P., & Niemivirta, M. (2010). Predicting children's mat­hematical performance in grade one by early numeracy. Learning and Individual Differences, 20, 427–435. https://doi.org/….2010.06.003

Anderson, M. L., & Penner-Wilger, M. (2013). The relation between finger gnosis and mathematical ability: why redeployment of neural circuits best explains the finding. Frontiers in Psychology, 4, 877 11. https://doi.org/…g.2013.00877

Anobile, G., Castaldi, E., Turi, M., Tinelli, F., & Burr, D. C. (2016). Numerosity but not texture density discrimination correlates with math ability in children. Developmental Psychology, 52(8), 1206–1216. https://doi.org/…7/dev0000155

Anobile, G., Cicchini, G. M., & Burr, D. C. (2015). Number as a primary perceptual attribute: a review. Perception, 45, 5–31. https://doi.org/…006615602599

Ansari, D. (2007). Does the parietal cortex distinguish between “10,” “ten,” and ten dots? Neuron, 53(2), 165–167. https://doi.org/….2007.01.001

Antell, S. E., & Keating, D. P. (1983). Perception of numerical invariance in neonates. Child Development, 54(3), 695–701. https://doi.org/10.2307/1130057

Bednářová, J. (2015). Diagnostika matematických schopností a dovedností. Brno: Pedagogickopsycho­logická poradna Brno.

Binterová, H., & Hošpesová, A. (2003). Objevování v matematickém vyučování podporované Excelem. University of South Bohemia České Budějovice Department of Mathematics Report Series 11, 267–273.

Binterová, H., Milota, J., & Vaníček, J. (2005). Global School – virtuální prostředí pro výuku matematiky na ZŠ formou e-learningu. University of South Bohemia České Budějovice Department of Mathematics Report Series, 13.

Bugden, S. & Ansari, D. (2016). Probing the nature of deficits in the ‚Approximate Number System‘ in children with persistent developmental dyscalculia. Developmental Science, 19, 817–33. https://doi.org/…1/desc.12324

Bugden, S., Price, G. R., McLean, D. A., & Ansari, D. (2012). The role of the left intraparietal sulcus in the relationship between symbolic number processing and children's arit­hmetic competence. Developmental Cognitive Neuroscience, 2, 448–457. https://doi.org/….2012.04.001

Burr, D., & Ross, J. (2008). A visual sense of number. Current Biology, 18, 425–428. https://doi.org/….2008.02.052

Butterworth, B. (2003). Dyscalculia Screener. London: nferNelson. Dostupné z: http://www.dyscalculie.com/…r_manual.pdf

Butterworth, B. (2010). Foundational numerical capacities and the origins of dyscalculia. Trends in Cognitive Sciences, 14(12), 534–541. https://doi.org/….2010.09.007

Butterworth, B., & Laurillard, D. (2010). Low numeracy and dyscalculia: identification and intervention. ZDM Mathematics Education, 42, 527–539. https://doi.org/…8-010-0267-4

Butterworth, B., Varma, S., & Laurillard, D. (2011). Dyscalculia: From brain to education. Science, 27(6033), 1049–1053. https://doi.org/…ence.1201536

Butterworth, B. & Walsh, V. (2011). Neural basis of mathematical cognition. Current Biology, 21, 1337–1420. https://doi.org/….2011.07.005

Cantlon, J. F., Brannon, E. M., Carter, E. J., & Pelphrey, K. A. (2006). Functional imaging of numerical processing in adults and 4-y-old children. PLoS Biology, 4(5), e125. https://doi.org/…pbio.0040125

Cantrell, L., Boyer, T. W., Cordes, S., & Smith, L. B. (2015). Signal clarity: An account of variability in infant quantity discrimination tasks. Developmental Science, 18, 877–893. https://doi.org/…1/desc.12283

Chesney, D. (2018). Numerical distance effect size is a poor metric of approximate number system acuity. Attention, Perception, & Psychophysic, 80, 1057–1063. https://doi.org/…4-018-1515-x

Cígler, H. (2018). Matematické schopnosti : teoretický přehled a jejich měření. Brno: Masarykova univerzita.

Chu, F. W., van Marle, K., & Geary, D. C. (2015). Early numerical foundations of young children’s mat­hematical development. Journal of Experimental Child Psychology, 132, 205–212. https://doi.org/….2015.01.006

Castelli, F., Glaser, D. E., & Butterworth, B. (2006). Discrete and analogue quantity processing in the parietal lobe: a functional MRI study. Proceeding of the National Academy of Sciences of the USA, 103, 4693–4698. https://doi.org/…s.0600444103

Castronovo, J., & Göbel, S. M. (2012). Impact of high mathematics education on the number sense. Plos One, 7(4), 1–16. https://doi.org/…pone.0033832

Coubart, A., Streri, A., de Hevia, M. D., & Izard, V. (2015). Crossmodal discrimination of 2 vs. 4 objects across touch and vision in 5-month-old infants. PLoS One, 10(3), e0120868. https://doi.org/…pone.0120868

Cutini, S., & Bonato, M. (2012). Subitizing and visual short-term memory in human and non-human species: a common shared system? Frontiers in Psychology, 3, 469. https://doi.org/…g.2012.00469

Dehaene, S. (2011). The number sense: How the mind creates mathematics (2nd ed.). New York: Oxford University Press.

Deloche, G., Souza, L., Braga, L. W., & Dellatolas, G. (1999). A calculation and number processing battery for clinical application in illiterates and semi-literates. Cortex, 35, 503–521. doi.org/10.1016/S0010–9452(08)70815–3

Desoete, A. (2015). Predictive indicators for mathematical learning disabilities/dys­calculia in kindergarten children (pp 90–100). In S. Chinn (Ed.), The International handbook for mathematical difficulties and dyscalculia. London & New York: Routledge.

De Smedt, B., Gilmore, C. K. (2011). Defective number module or impaired access? Numerical magnitude processing in first graders with mathematical difficulties. Journal of Experimental Child Psychology, 108, 278–292. https://doi.org/….2010.09.003

De Smedt, B., Noël, M. P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mat­hematical skills? A review of evidence from brain and behaviour. Trends in Neuroscience and Education, 2(2), 48–55. https://doi.org/….2013.06.001

DeWind, N. K., & Brannon, E. M. (2012). Malleability of the approximate number system: effects of feedback and training. Frontiers in Human Neuroscience, 6, 68. https://doi.org/…m.2012.00068

Durgin, F. H. (1995). Texture density adaptation and the perceived numerosity and distribution of texture. Journal of Experimental Psychology-Human Perception and Performance, 21, 149–169. https://doi.org/…523.21.1.149

Durgin, F. H. (2008). Texture density adaptation and visual number revisited. Current Biology, 18, R855–R856. https://doi.org/….2008.07.053

Elmore, L. C., Ma, W. J., Magnotti, J. F., Leising, K. J., Passaro, A. D., Katz, J. S., Wright, A. A. (2011). Visual short-term memory compared in rhesus monkeys and humans. Current Biology, 21, 975–979. https://doi.org/….2011.04.031

Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53–72. https://doi.org/….2014.01.013

Feigenson, L., Dehaene S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Science, 8, 307–314. https://doi.org/….2004.05.002

Furman, T., & Rubinsten, O. (2012). Symbolic and non-symbolic numerical representation in adults with and without developmental dyscalculia. Behavioral & Brain Functions, 8(1), 55–69. https://doi.org/…44-9081-8-55

Geary, D. C., Bailey, D. H., & Hoard, M. K. (2009). Predicting mathematical achievement and mathematical learning disability with a simple screening tool the number sets test. Journal of Psychoeducational Assessment, 27(3), 265–279. https://doi.org/…282908330592

Gelman, R., & Gallistel, C. R. (1978). The child’s under­standing of number. Cambridge, MA: Harvard University Press.

Gilmore, C., Attridge, N., & Inglis, M. (2011). Measuring the approximate number system. The Quarterly Journal of Experimental Psychology, 64, 2009–2109. https://doi.org/….2011.574710

Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115, 394–406. https://doi.org/….2010.02.002

Gliga, F., & Gliga, T. (2012). Romanian screening instrument for dyscalculia. Procedia-Social and. Behavioral Sciences, 33, 15–19. https://doi.org/….2012.01.074

Goebel, S. M., Watson, S. E., Lervag, A., & Hulme, C., (2014). Children's arit­hmetic development it is number knowledge, not the approximate number sense, that counts. Psychological Science, 25 (3), pp. 789–798. https://doi.org/…797613516471

Gross, J., Hudson, C., & Price, D. (2009). The long-term costs of numeracy difficulties. London, UK: Every Child a Chance Trust.

Haist, F., Wazny, J. H., Toomarian, E., & Adamo, M. (2015). Development of brain systems for nonsymbolic numerosity and the relationship to formal math academic achievement. Human Brain Mapping, 36, 804–826. https://doi.org/…02/hbm.22666

Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665–668. https://doi.org/…/nature07246

Harvey, B. M., Klein, B. P., Petridou, N., & Dumoulin, S. O. (2013). Topographic representation of numerosity in the human parietal cortex. Science (New York, N.Y.), 341(6150), 1123–1126. https://doi.org/…ence.1239052

He, L. X., Zhang, J., Zhou, T. G., & Chen, L. (2009). Connectedness affects dot numerosity judgment: Implications for configural processing. Psychonomic Bulletin & Review, 16, 509–517. https://doi.org/…PBR.16.3.509

Holloway, I. D. & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children's mat­hematics achievement. Journal of Experimental Child Psychology, 103(1), 17–29. https://doi.org/….2008.04.001

Hyde, C. D. (2011). Two Systems of Non-Symbolic Numerical Cognition. Frontiers in Human Neuroscience, 5, 150. https://doi.org/…m.2011.00150

Iuculano, T., Tang, J., Hall, C. W., & Butterworth, B. (2008). Core information processing deficits in developmental dyscalculia and low numeracy. Developmental Science, 11, 669–680. https://doi.org/…2008.00716.x

Izard, V., Dehaene-Lambertz, G., & Dehaene, S. (2008). Distinct cerebral pathways for object identity and number in human infants. PLoS Biology, 6, e11. https://doi.org/…pbio.0060011

Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences of the United States of America, 106(25), 10382–10385. https://doi.org/…s.0812142106

Kadosh, R. C., Lammertyn, J., & Izard, V. (2008). Are numbers special? An overview of chronometric, neuroimaging, developmental and comparative studies of magnitude representation. Progress in Neurobiology, 84(2), 132–147. https://doi.org/….2007.11.001

Kaufman, E. L., Lord, M. W., Reese, T. W, & Volkmann, J. (1949). The discrimination of visual number. American Journal of Psychology, 62(4), 498−525. https://doi.org/10.2307/1418556

Kaufmann, L., Vogel, S., Starke, M., Kremser, C., Schocke, M., & Wood, G. (2009). Developmental dyscalculia: compensatory mechanisms in left intraparietal regions in response to nonsymbolic magnitudes. Behavioral and Brain Functions, 5(1), 35. https://doi.org/…44-9081-5-35

Kucian, K., Loenneker, T., Dietrich, T., Dosch, M., Martin, E., & von Aster, M. (2006). Impaired neural networks for approximate calculation in dyscalculic children: a functional MRI study. Behavioral and Brain Functions, 2, 31. https://doi.org/…44-9081-2-31

Kucian, K., Loenneker, T., Martin, E., & von Aster, M. (2011). Nonsymbolic numerical distance effect in children with and without developmental dyscalculia: a parametric FMRI study. Developmental Neuropsychology, 36(6), 741–762. https://doi.org/….2010.549867

Kucian, K., Ashkenazi, S. S., Hanggi, J., Rotzer, S., Jancke, L., Martin, E., & von Aster, M. (2013). Developmental dyscalculia: a dysconnection syndrome? Brain Structure Function, 219(5), 1721–1733. https://doi.org/…9-013-0597-4

Kucian, K. & von Aster, M. (2015). Developmental dyscalculia. European Journal of Pediatrics, 174, 1–13. https://doi.org/…1-014-2455-7

Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: a study of 8–9-year-old students. Cognition, 93, 99–125. https://doi.org/….2003.11.004

Landerl, K., Fussenegger, B., Moll, K., & Willburger, E. (2009). Dyslexia and dyscalculia: Two learning disorders with different cognitive profiles. Journal of Experimental Child Psychology, 103(3), 309–324. https://doi.org/….2009.03.006

Libertus, M. E., & Brannon, E. M. (2010). Stable individual differences in number discrimination in infancy. Developmental Science, 13(6), 900–906. https://doi.org/…2009.00948.x

Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Is approximate number precision a stable predictor of math ability? Learning and Individual Differences, 25, 126–133. https://doi.org/….2013.02.001

Libertus, M. E., Odic, D., & Halberda, J. (2012). Intuitive sense of number correlates with math scores on college-entrance examination. Acta Psychologica, 141(3), 373–379. https://doi.org/….2012.09.009

Lipton, J. S., Spelke, E. S. (2004). Discrimination of large and small numerosities by human infants. Infancy, 5(3), 271–290. https://doi.org/…7078in0503_2

Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1–6. Developmental Science, 17, 714–726. https://doi.org/…1/desc.12152

Mazzocco, M. M. M. (2005). Challenges in identifying target skills for math disability screening and intervention. Journal of Learning Disabilities, 38(4), 318–323. https://doi.org/…050380040701

Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011). Preschoolers’ precision of the approximate number system predicts later school mathematics performance. PLoS ONE, 6, Article e23749. https://doi.org/…pone.0023749

McLean, J. F., and Hitch, G. J. (1999). Working memory impairments in children with specific arithmetic learning difficulties. Journal of Experimental Child Psychology, 74(3), 240–260. https://doi.org/…cp.1999.2516

Meck, W. H., & Church, R. M. (1983). A mode control model of counting and timing process. Journal of Experimental Psychology. Animal Behavior Processes, 9(3), 320–334.

Mussolin, C., De Volder, A., Grandin, C., Schlogel, X., Nassogne, MC., & Noel, M. P. (2010). Neural correlates of symbolic number comparison in developmental dyscalculia. Journal of Cognitive Neuroscience, 22(5), 860–874. https://doi.org/…n.2009.21237

Nieder, A. (2013). Coding of abstract quantity by ‘number neurons’ of the primate brain. Journal of Comparative Physiology A, 199, 1–16. https://doi.org/…9-012-0763-9

Nieder, A. & Dehaene, S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185–208. https://doi.org/…51508.135550

Nieder, A., & Miller, E. K. (2004). A parieto-frontal network for visual numerical information in the monkey. Proceedings of the National Academy of Sciences of the United States of America, 101(19), 7457–7462. https://doi.org/…s.0402239101

Novák, J. (2001). Barevná kalkulie. Brno: Psychodiagnostika.

Novák, J. (2002). Kalkulie IV. Brno: Psychodiagnostika.

Novák, J. (2004). Dyskalkulie: metodika rozvíjení základních početních dovedností. Vyd. 3., zcela přeprac. Havlíčkův Brod: Tobiáš.

Olmstead, M., & Kuhlmeier, V. (2015). Comparative cognition. London, UK: Cambridge University Press.

Olsson, L., Östergren, R., & Träff, U. (2016). Developmental dyscalculia: A deficit in the approximate number system or an access deficit? Cognitive Development, 39, 154–167. https://doi.org/….2016.04.006

Park, J., & Brannon, E. M. (2014). Improving arithmetic performance with number sense training: an investigation of underlying mechanism. Cognition, 133(1), 188–200. https://doi.org/….2014.06.011

Park, J., Bermudez, V., Roberts, R. C., & Brannon, E. M. (2016). Non-symbolic approximate arithmetic training improves math performance in preschoolers. Journal of Experimental Child Psychology, 152(12), 278–293. https://doi.org/….2016.07.011

Parsons, S., & Bynner, J. (2005). Does numeracy matter more? London: National Research and Development Centre for Adult Literacy and Numeracy.

Piazza, M. (2010). Neurocognitive start-up tools for symbolic number representations. Trends in Cognitive Sciences, 14, 542–551. https://doi.org/….2010.09.008

Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44(3), 547–555. https://doi.org/….2004.10.014

Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., Dehaene, S., & Zorzi, M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116(1), 33–41. https://doi.org/….2010.03.012

Piazza, M., Fumarola, A., Chinello, A., & Melcher, D. (2011). Subitizing reflects visuo-spatial object individuation capacity. Cognition, 121, 147–153. https://doi.org/….2011.05.007

Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S. (2007). A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron, 53, 293–305. https://doi.org/….2006.11.022

Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., Dehaene, S., & Zorzi, M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116(1), 33–41. https://doi.org/….2010.03.012

Pinel, P., Dehaene, S., Riviere, D., & LeBihan, D. (2001). Modulation of parietal activation by semantic distance in a number comparison task. Neuroimage, 14(5), 1013–1026. https://doi.org/…mg.2001.0913

Pinheiro-Chagas, P., Wood, G., Knops, A., Krinzinger, H., Lonnemann, J., Starling-Alves, I., & Haase, V. G. (2014). In how many ways is the approximate number system associated with exact calculation? PLoS ONE, 9(11):e111155. https://doi.org/…pone.0111155

Plassová, M., Tesař, M., Vavrečka, M., & Valuchová, K. (2016). Approximate number system in children. In M. McGreevy & R. Rita (Eds.), Proceedings of the 6th Biannual CER Comparative European Research Conference (pp. 182–187). London: Science.

Pražáková, K. (2017). Přesnost a rychlost ve vnímání množství u jedinců s dyskalkulií. Diplomová práce. Praha: Univerzita Karlova v Praze.

Price, G. R., Palmer, D., Battista, C., & Ansari, D. (2012). Nonsymbolic numerical magnitude comparison: Reliability and validity of different task variants and outcome measures, and their relationship to arithmetic achievement in adults. Acta Psychologica, 17, 50–57. https://doi.org/….2012.02.008

Purpura, D. J., & Logan, J. A. R. (2015). The nonlinear relations of the approximate number system and mathematical language to early mathematics development. Developmental Psychology, 57(12), 1717–1724. https://doi.org/…7/dev0000055

Rotzer, S., Kucian, K., Martin, E., von Aster, M., Klaver, P., & Loenneker, T. (2008). Optimized voxel-based morphometry in children with developmental dyscalculia. Neuroimage, 39, 417–422. https://doi.org/….2007.08.045

Rotzer, S., Loenneker, T., Kucian, K., Martin, E., Klaver, P., & von Aster, M. (2009). Dysfunctional neural network of spatial working memory contributes to developmental dyscalculia. Neuropsychologia, 47(13), 2859–2865. https://doi.org/….2009.06.009

Rousselle, L., & Noël, M. P. (2007). Basic numerical skills in children with mathematics learning disabilities: a comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102(3), 361–395. https://doi.org/….2006.01.005

Rykhlevskaia, E., Uddin, L. Q., Kondos, L., & Menon, V. (2009). Neuroanatomical correlates of developmental dyscalculia: Combined evidence from morphometry and tractography. Frontiers in Human Neuroscience, 3, 51. https://doi.org/….09.051.2009

Samková, L. (2013). Využití programu GeoGebra při nácviku odhadů. Sborník 6. konference Užití počítačů ve výuce matematiky (323−336). České Budějovice: Jihočeská univerzita v Č. Budějovicích.

Sasanguie, D., Defever, E., Maertens, B., & Reynvoet, B. (2014). The approximate number system is not predictive for symbolic number processing in kindergarteners. Quarterly Journal of Experimental Psychology, 67, 271–280. https://doi.org/….2013.803581

Sasanguie, D., Göbel, S., & Reynvoet, B. (2013). Left parietal TMS disturbs priming between symbolic and non-symbolic number representations. Neuropsychologia 51(8), 1528–1533. https://doi.org/….2013.05.001

Schneider, M. Schneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S. S., Stricker, J., & De Smedt, B. (2016). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: a meta-analysis. Developmental Science, 20(3). https://doi.org/…1/desc.12372

Starr, A., Libertus, M. E., & Brannon, E. M. (2013). Number sense in infancy predicts mathematical abilities in childhood. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/…s.1302751110

Sullivan, J., Frank, M. C., & Barner, D. (2016). Intensive math training does not affect approximate number acuity: Evidence from a three-year longitudinal curriculum intervention. Journal of Numerical Cognition, 2(2), 57–76. https://doi.org/…/jnc.v2i2.19.

Shalev, R.S., Manor, O., Kerem, B., Ayali, M., Badichi, N., Friedlander, Y., & Gross-Tsur, V. (2001). Developmental dyscalculia is a familial learning disability. Journal of Learn Disabilities, 34 (1), 59–65. https://doi.org/…940103400105

Schleger, F., Landerl, K., Muenssinger, J., Draganova, R., Reinl, M., Kiefer-Schmidt, I., Weiss, M., Wacker-Gussmann, A., Huotilaine, M., & Preissl, H. (2014). Magnetoencepha­lographic signatures of numerosity discrimination in fetuses and neonates. Developmental Neuropsychology, 39(4), 316–329. https://doi.org/….2014.914212.

Schwenk, C., Sasanguie, D., Kuhn, J. T., Kempe, S., Doebler, P., & Holling, H. (2017). (Non-) symbolic magnitude processing in children with mathematical difficulties: A meta-analysis. Research in Developmental Disabilities, 64, 152–167. https://doi.org/….2017.03.003

Soto-Calvo, E., Simmons, F. R., Willis, C., & Adams, A. M. (2015). Identifying the cognitive predictors of early counting and calculation skills: Evidence from a longitudinal study. Journal of Experimental Child Psychology, 140, 16–37. https://doi.org/….2015.06.011

Sousa, D. (2010). Mind, brain, and education: Neuroscience implications for the classroom. Bloomington: Solution Tree.

Taves, E. H. (1941). Two mechanisms for the perception of visual numerousness. Archives of Psychology, 265(47).

Traspe, P., & Skalková, I. (2013). DISMAS : Diagnostika struktury matematických schopností. Praha: Národní ústav pro vzdělávání.

Ven, F. van der, Takashima, A., Segers, P. C. J., Fernandez, G. S. E., Verhoeven, L. T. W. (2016). Non-symbolic and symbolic notations in simple arithmetic differentially involve intraparietal sulcus and angular gyrus activity. Brain Research, 1643, 91 – 102. https://doi.org/….2016.04.050

Von Aster, M., & Shalev, R. (2007). Number development and developmental dyscalculia. Developmental Medicine & Child Neurology, 49, 868–873. https://doi.org/…2007.00868.x

von Aster, M. G. & Weinholdová, M. (2008). ZAREKI: Neuropsychologická batéria testov na spracovávanie čísiel a počítanie u detí. Bratislava, Brno: Psychodiagnostika.

Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74, B1–B11. https://www.harvardlds.org/…u2000b-1.pdf

Zobrazit celé Skrýt